Treewidth and Hypertree Width

نویسندگان

  • Georg Gottlob
  • Gianluigi Greco
  • Francesco Scarcello
چکیده

The chapter covers methods for identifying islands of tractability for NP-hard combinatorial problems by exploiting suitable properties of their graphical structure. Acyclic structures are considered, as well as nearly acyclic ones identified by means of so-called structural decomposition methods. In particular, the chapter focuses on the tree decomposition method, which is the most powerful decomposition method for graphs, and on the hypertree decomposition method, which is its natural counterpart for hypergraphs. These problem-decomposition methods give rise to corresponding notions of width of an instance, namely, treewidth and hypertree width. It turns out that many NP-hard problems can be solved efficiently over classes of instances of bounded treewidth or hypertree width: deciding whether a solution exists, computing a solution, and even computing an optimal solution (if some cost function over solutions is specified) are all polynomial-time tasks. Example applications include problems from artificial intelligence, databases, game theory, and combinatorial auctions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Tractability and Hypertree Width

We investigate in this paper the notion of hypertree width as a parameter for bounding the complexity of CSPs, especially those whose constraints can be represented compactly, such as SAT problems. We first identify a simple condition which is necessary for hypertree width to provide better complexity bounds than treewidth. We then observe that SAT problems do not satisfy this condition and, he...

متن کامل

Bounding Graphical Models Processing by Hypertree Width

In 2000, Gottlob et al. [3] introduced a new graph parameter, the hypertree width, and showed that it provides a broader characterization of tractable constraint networks than the treewidth. In 2005 this observation was extended to general graphical models [5], showing that the hypertree width yields bounds on inference algorithms. This paper explores further the practical properties of the hyp...

متن کامل

Approximating Width Parameters of Hypergraphs with Excluded Minors

The notions of hypertree width and generalized hypertree width were introduced by Gottlob, Leone, and Scarcello in order to extend the concept of hypergraph acyclicity. These notions were further generalized by Grohe and Marx, who introduced the fractional hypertree width of a hypergraph. All these width parameters on hypergraphs are useful for extending the tractability of many problems in dat...

متن کامل

Approximating Acyclicity Parameters of Sparse Hypergraphs

The notions of hypertree width and generalized hypertree width were introduced by Gottlob, Leone, and Scarcello in order to extend the concept of hypergraph acyclicity. These notions were further generalized by Grohe and Marx who introduced the fractional hypertree width of a hypergraph. All these width parameters on hypergraphs are useful for extending tractability of many problems in database...

متن کامل

On the Practical Significance of Hypertree vs. TreeWidth

In 2000, [4] presented a new graph parameter, the hypertree width, and showed that it provides a broader characterization of tractable constraint networks than the treewidth. In 2005, [5] extended this result to general probabilistic graphical models, showing that the hypertree width yields bounds on inference algorithms when functions are expressed relationally. The main contribution of this p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014